February 23, 2015 Michael J. Klotzbach, General Manager U.S. Chrome Corporation of New York 31 Swan Street Batavia, New York 14020 Re: CY 2014 Annual Hazardous Waste Export Report Dear Mr. Klotzbach: As per your request, Hazard Evaluations, Inc. (HEI) completed U.S. Chrome Corporation of New York's (USC) CY 2014 annual Hazardous Waste Export Report which is to be submitted to the USEPA. The completion of this document was based upon various information (including Hazardous Waste Manifests and shipment volumes) provided to HEI by both USC and Stablex of Canada. In order to assist USC in meeting these USEPA reporting requirements, HEI has prepared the attached reports for submittal. Please be sure to sign and date <u>all</u> Export Report Sheets. After making copies of the signed pages for your records, this reporting package should be <u>submitted</u> (<u>postmarked</u>) by <u>March 1, 2015</u> via certified mail (<u>return receipt</u>) to the following address: Attn: Scott Nelson United States Environmental Protection Agency Office of Federal Activities International Compliance Assurance Division Ariel Rios Building: (2254 A) 1200 Pennsylvania Avenue, NW Washington, DC 20460 If you have questions concerning the information presented, please contact me directly. A draft submittal letter is attached for your use. Very truly yours, HAZARD EVALUATIONS, INC. C. Mark Hanna, CHMM CMarket Serve President Attachments 137556\USC\environmental\HazWaste\ExportReport 14cv February 26, 2015 Scott Nelson United States Environmental Protection Agency Office of Federal Activities International Compliance Assurance Division Ariel Rios Building: (2254 A) 1200 Pennsylvania Avenue, NW Washington, DC 20460 RE: CY 2014 Annual Hazardous Waste Export Report Dear Mr. Nelson: Please find attached U. S. Chrome Corporation of New York's (USC) CY 2014 annual Hazardous Waste Export Report. The completion of this document was based upon Hazardous Waste Manifests and shipment volumes provided by Stablex of Canada. A copy of the latest Hazardous Waste Reduction Plan (revised June 2014) is attached as required. If you have any questions concerning the information presented, please contact me directly. Very truly your, U.S. Chrome Corporation of New York Michael Klotzbach General Manager Attachment ### CY 2014 Export Report Attachment 1 Hazardous Waste Export Reports 1. PRIMARY EXPORTER (Consignor) Name: USEPA ID#: U.S. Chrome Corporation of New York NYD990774206 Mailing Address: 31 Swan Street Batavia, New York 14020 Site Address: 31 Swan Street Batavia, New York 14020 2. EXPORT INTERMEDIARY > Name: USEPA ID#: Gulfstream TLC, Inc. NYR000156539 Mailing Address: 1080 Military Turnpike Unit 410 Plattsburg, New York 12901 3. CONSIGNEE Name: USEPA ID#: Mailing Address: Stablex Canada, Inc. NYD980756415 760 Boul. Industriel Blainsville, Quebec J7C 3V4 4. TRANSPORTER #1 Name: USEPA ID#: Transport Rollex Ltee NYF006000053 5. WASTE INFORMATION Description: USEPA Waste #: USDOT Shipping Name: USDOT Hazard Class: USDOT ID Code: Spent Chromic Acid Tank Bottom Sludge D002, D007 RQ Waste Corrosive Solid, Acidic, Inorganic nos UN3260 6. SHIPPING INFORMATION Total Shipments: Shipment Dates: 2/28/14, 5/28/14, 9/10/14 & 12/10/14 Total Volume Shipped: 3.5 tons 7. WASTE MINIMIZATION Report attached for even numbered years. 8 CERTIFICATION > I certify under the penalty of the law that I have personally examined and am familiar with the information submitted in this report, and that based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the submitted information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment. Date: 2/26/15 1. PRIMARY EXPORTER (Consignor) Name: USEPA ID#: Mailing Address: NYD990774206 31 Swan Street Batavia, New York 14020 U.S. Chrome Corporation of New York Site Address: 31 Swan Street Batavia, New York 14020 2. EXPORT INTERMEDIARY Name: USEPA ID#: Mailing Address: Gulfstream TLC, Inc. NYR000156539 1080 Military Turnpike Unit 410 Plattsburg, New York 12901 3. CONSIGNEE Name: USEPA ID#: Mailing Address: Stablex Canada, Inc. NYD980756415 760 Boul, Industriel Blainsville, Quebec J7C 3V4 4. TRANSPORTER #1 > Name: USEPA ID#: Transport Rollex Ltee NYF006000053 Alkaline Strip Solution D002, D007 5. WASTE INFORMATION Description: EPA Waste #: DOT Shipping Name: DOT Hazard Class: DOT ID Code: UN3266 SHIPPING INFORMATION Total Shipments: Shipment Dates: 5/28/14 & 9/10/14 Total Volume Shipped: 2.2 tons 7. WASTE MINIMIZATION Report attached for even numbered years. RQ Waste Corrosive Liquid, Basic, Inorganic nos CERTIFICATION 8. 6. I certify under the penalty of the law that I have personally examined and am familiar with the information submitted in this report, and that based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the submitted information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment. mm | A Date: 2/26/15 1. PRIMARY EXPORTER (Consignor) > Name: USEPA ID#: NYD990774206 Mailing Address: 31 Swan Street Batavia, New York 14020 U.S. Chrome Corporation of New York Site Address: 31 Swan Street Batavia, New York 14020 2. **EXPORT INTERMEDIARY** > Name: USEPA ID#: Mailing Address: Gulfstream TLC, Inc. NYR000156539 1080 Military Tumpike Unit 410 Plattsburg, New York 12901 3. CONSIGNEE > Name: USEPA ID#: Mailing Address: Stablex Canada, Inc. NYD980756415 760 Boul. Industriel Blainsville, Quebec J7C 3V4 4. TRANSPORTER #1 Name: USEPA ID#: Transport Rollex Ltee NYF006000053 5. WASTE INFORMATION Description: EPA Waste #: DOT Shipping Name: DOT Hazard Class: DOT ID Code: Waste Chromic Acid Solution D002, D007 RQ Waste Chromic Acid Solution UN1755 6. SHIPPING INFORMATION Total Shipments: Shipment Dates: 2/27/14, 5/28/14, 9/10/14 & 12/11/14 Total Volume Shipped: 6.3 tons 7. WASTE MINIMIZATION Report attached for even numbered years. 8. CERTIFICATION > I certify under the penalty of the law that I have personally examined and am familiar with the information submitted in this report, and that based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the submitted information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment. mul # __ Date: 2/26/15 1. PRIMARY EXPORTER (Consignor) Name: U.S. Chrome Corporation of New York USEPA ID#: NYD990774206 Mailing Address: 31 Swan Street Batavia, New York 14020 Site Address: 31 Swan Street 2. **EXPORT INTERMEDIARY** Name: Gulfstream TLC, Inc. USEPA ID#: NYR000156539 Mailing Address: 1080 Military Turnpike Unit 410 Plattsburg, New York 12901 Batavia, New York 14020 3. CONSIGNEE Name: Stablex Canada, Inc. USEPA ID#: NYD980756415 Mailing Address: 760 Boul, Industriel Blainsville, Quebec J7C 3V4 4. TRANSPORTER #1 Name: Transport Rollex Ltee USEPA ID#: NYF006000053 5. WASTE INFORMATION Chrome Contaminated Debris Description: EPA Waste #: D007, D008 DOT Shipping Name: RQ Waste Environmentally Hazardous Substance Solid nos DOT Hazard Class: DOT ID Code: UN3077 6. SHIPPING INFORMATION Total Shipments: Shipment Dates: 2/28/14, 5/28/14, 9/10/14 & 12/15/14 Total Volume Shipped: 12.6 tons 7. WASTE MINIMIZATION Report attached for even numbered years. 8. CERTIFICATION I certify under the penalty of the law that I have personally examined and am familiar with the information submitted in this report, and that based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the submitted information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment. 1 1. PRIMARY EXPORTER (Consignor) Name: USEPA ID#: Mailing Address: Site Address: U.S. Chrome Corporation of New York NYD990774206 31 Swan Street Batavia, New York 14020 31 Swan Street Batavia, New York 14020 2. EXPORT INTERMEDIARY Name: USEPA ID#: Mailing Address: Gulfstream TLC, Inc. NYR000156539 1080 Military Turnpike Unit 410 Plattsburg, New York 12901 3. CONSIGNEE Name: USEPA ID#: Mailing Address: Stablex Canada, Inc. NYD980756415 760 Boul. Industriel Blainsville, Quebec J7C 3V4 4. TRANSPORTER #1 Name: USEPA ID#: Transport Rollex Ltee NYF006000053 5. WASTE INFORMATION Description: EPA Waste #: DOT Shipping Name: Waste Water Treatment Filter Cake F006 F000 RQ Waste Environmentally Hazardous Substances, Solids nos DOT Hazard Class: DOT ID Code: 8 UN3077 6. SHIPPING INFORMATION Total Shipments: Shipment Dates: Total Volume Shipped: 3 2/27/14, 9/10/14 & 12/10/14 3.0 tons 7. WASTE MINIMIZATION Report attached for even numbered years. 8. CERTIFICATION I certify under the penalty of the law that I have personally examined and am familiar with the information submitted in this report, and that based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the submitted information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment. X ### CY 2014 Export Report Attachment 2 Current Hazardous Waste Reduction Plan ### New York State Department of Environmental Conservation Division of Materials Management Bureau of Waste Reduction & Recycling, 9th Floor 625 Broadway, Albany, New York 12233-7253 Phone: (518) 402-8706 • Fax: (518) 402-9024 Website: www.dec.ny.gov APR 2 4 2014 Mr. Michael Klotzbach U.S. Chrome Corp. of NY 31 Swan Street Batavia, NY 14020 Dear Mr. Klotzbach: Re: Biennial Update (BU) - U.S. Chrome Corp. of NY - EPA ID# NYD990774200 Based on our review of your Biennial
Update (BU) of the Hazardous Waste Reduction Plan (HWRP), received on July 1, 2013, we find that your update meets the requirements of Article 27, Section 0908 of the Environmental Conservation Law. Please submit an Annual Status Report (ASR) as required by the law by July 1, 2014, on your progress in achieving the time schedule in your update for implementing waste reduction measures identified. The ASR must include an update of Table 1 and Table 2, and must be submitted by July 1 for each year that a hazardous waste reduction plan Biennial Update is not submitted. Please note that a Biennial Update of your plan is due on or before July 1, 2015 and every two years thereafter. <u>Please note</u> that all further ASR's and BU's must be submitted electronically. Further reports must be submitted on <u>CD</u> or <u>faxed</u>. The fax number is (518)-402-9024. We encourage you to make pollution prevention an ongoing process, and to look for additional hazardous waste reduction technologies that can be implemented at your facility. The ongoing development and implementation of a waste reduction training program for your facility personnel is an important ingredient for the continued success of your reduction program. If you have any questions, please contact me at (518) 402-8706. Sincerely, Richard J. Kasprowicz, P.E. Enclosures cc: S. Foti, Reg. 8 M. Khalil, Reg. 8 J. Malki, USEPA C. M. Hanna - Hazard Evaluations ### NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION HAZARDOUS WASTE REDUCTION PLAN / BIENNIAL UPDATE FACILITY SUMMARY SHEET Date: April 24, 2014 | EPA ID# | NYD990774200 | |---|-------------------------------| | Company Name | U.S. Chrome Corp. of New York | | Address | 31 Swan Street | | City | Batavia | | State | New York | | Zipcode | 14020 | | Facility Contact | Mr. Michael J. Klotzbach | | Phone # | (585) 343-7077 | | NAICS Code | 332813 | | Region (NYS) | Eight (8) | | Final HSWA Permit Effective Date | | | Final NYS Part 373 Permit
Effective Date | | ### **Description of Original Process:** Facility specializes in hard chrome electroplating of steel parts. Operations performed include machining of metal parts, alkaline cleaning, non-cyanide chromium electroplating and rinsing. ### Description of Waste Reduction Activity: Improvements in housekeeping, minor changes in operating practices and the installation/use of additional control equipment are scheduled for 2013/2014 | COMPANY MAND | | |-----------------------------------|-----------------------------| | US Chrome Corporation of New York | RFA LD. NUMBER NYD990774200 | | | | ### TABLE 1 | WASTE | NAME OF WASTE | SOURCE OF GENERATION | DISPOSAL METHOD | J.O. | QUANTITY OF WASTE GENERATED | E CENERATED | | | PRODUCTIVI | TY INDEX | | |-----------------------|--------------------|----------------------|-------------------|------|-----------------------------|-------------|---|------------|---|--------------|-----------| | IDNUMBER | | | | 2011 | 2012 | | | BASE INDEX | BASE INDEX - I (YEAR HWRP FIRST SUBMITTED)
2011 2012 | WRP FIRST SI | ивмиттер) | | 001 | Chromic Acid | Plating solution | Treat/Recycle | 9.4 | 3.6 | | | 1.46 | 1.05 | | | | | Solution (D) | with impurities | | | | · | 003 | Chromic Acid | Sediment on | Stabilization | 1.5 | 0 | 4 | T | 1.46 | 1.05 | | | | | Tank Sludge (E) | bottom of tank | & Secure Landfill | | | | | | | | - | | | | | | | , | | | | | | | | 603 | Waste Treatment | WW Metals removal | Stabilization | 1.5 | 2.1 | | | 1.46 | 1.05 | | , | | | Filter Cake (A) | | & Secure Landfill | | | | T | | | | Ī | | | | | | | | - | T | | | | | | . 004 | Waste Water (B) | Plating & Rinsing | On-Site Treatment | 417 | 450 | | | 1.46 | 1.05 | | | | and the second second | | | | | | | | | | | | | 900 | Stripping Solution | Spent Alkaline | Treatment & | 4.4 | 6.1 | | | 1.46 | 1.05 | | | | | - | Strip Solution | Secure Landfill | | | | | | | 1 | | | | | | | | | | | | | | | | 900 | Chrome Debris | Tape, gloves, etc. | Stabilization | 8.6 | 10.8 | | | 1.46 | 1.05 | | T | | | | | & Secure Landfill | | | | | | | | | THIS FORM DEVELOPED BY: THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF SOLID & HAZARDOUS MATERIALS, BUREAU OF WASTE REDUCTION & RECYCLING | | EPALD. NUMBER NYD9 90774200 | 0000 | CONTRACTOR OF CO | |------------|-----------------------------|------|--| | - Commence | 18 | | Contraction of Chicago and Contraction of Contracti | | | * | | | | | New York | | Abrahaman | | | Corporation of No | | the Constitution of Co | | | . Chrome Corpo | | | | | COMPANY NAME U.S | | the section of se | TABLE 1 (continuation #1) | (GE) | | | Τ | T | T | T | 1 | Τ | Τ | T | Π | T | T | T | - | |--|--------|-----------------------------|----------|------------------------------------|-----------|---|----|---|--|---|---|-----|---|---
--| | SUBMIT | | | _ | _ | . | 1 | - | | | | | | | | - | | TFY INDEX
IWRP FIRST | | | | | | | | - | Contract of the th | | | | | | The state of s | | PRODUCTIVITY INDEX
BASE INDEX = 1 (YEAR HWRP FIRST SUBMITTED) | 2012 | 1.05 | | 1.05 | 1 | | | T | | | | | T | | - | | BASE INDE | 2011 | 1.46 | | 1.46 | | | | | | | | | | | The state of s | | | | | | | | | | | | | | 1 | - | | The Party of the Party | | E GENERATED) | | | | 1 | | | | | | | | | | | THAY COMPO | | QUANTITY OF WASTE GENERATED (TONS) | 2012 | | | 0 | | | | | | r | | | | | UVIDONIMER | | | 2011 | 5.4 | | 3.0 | | | | | | | | | | | MRNT OR PR | | DISPOSALMETHOD | | Treatment & Secure Landfill | | Stabilization &
Secure Landfill | | | | | | | | *** | | | BY THE NEW YORK STATE DRDA BTMENT OF PANIFOCALMENTAL | | SOURCE OF GENERATION | | Finishing | | Unused/Expired | Materials | | 22 | | - | | | | | | THIS FORM DEVELOPED BY: THE | | NAME OF WASTE | | Waste De-burring | Solution | Waste Lacquer/ | Thinner | | | | | | | | | | H | | WASTE
STREAM
ID | NUMBER | 200 | | 800 | 4 | | | | | | | | | | | DIVISION OF SOLID & HAZARDOUS MATERIALS, BUREAU OF WASTE REDUCTION & RECYCLING | | 1. | | |------------------------|----------------------------------|--| | S. Cross Statement Co. | PPA LD. NUMBER NYD990774200 | | | | . Chrome Corporation of New York | | | | COMPANY NAME U.S. | | TABLE 1 (continuation #1) | WASTE
STREAM
ID | NAME OF WASTE | SOURCE OF GENERATION | DISPOSAL METHOD | _ | QUANTITY OF V | QUANTITY OF WASTE GENERATED (TONS) | red | BASE IND | PRODUCT
EX = 1 (YEAR | PRODUCTIVITY INDEX BASE (VEAR HWRP FIRST SUBMITTED) | SUBMITTED | |-----------------------|--------------------|------------------------------|---------------------------------------|----------------------------------|---------------|--|-------|----------|-------------------------|---|-----------| | NUMBER | | | | 2007 | 2008 | 2009 | 2010 | 2007 | 2008 | 2009 | 2010 | | 100 | Chromic Acid | Plating Solution | Treat/Recycle | 5.95 | 8.75 | 10.85 | 3.0 | 1.0 | 1.32 | 0.77 | 0.94 | | | Solution (D) | with impurities | 002 | Chromic Acid | Sediment on | Stabilization | 3.85 | 0.7 | 0.7 | 0.35 | 1.0 | 1 32 | 7.6 | 200 | | | Tank Sludge (E) | Bottom of Tank | & Secure Landfill | | | | | | | | 50.0 | | | | | | | | | | | | | | | 6003 | Waste Treatment | WW Metals removal | Stabilizaion | 2.25 | 3.75 | 0.75 | 0.75 | 1.0 | 1.32 | 0.77 | 0.94 | | | Filter Cake (A) | | & Secure Landfill | 004 | Waste Water (B) | Plating & Rinsing | On site Treatment | 417 | 462.3 | 500.4 | 362.8 | 9 | 1 32 | 1 2 | | | | | | | | | | | 2.1 | 70.1 | | 0.94 | | 005 | Stripping Solution | Spent Alkaline | Treatment & | 2.75 | 8.25 | 0 | 6.05 | 1.0 | 7 33 | 0.77 | 96 0 | | | | Strip Solution | Secure Landfill | | | | | | 7.04 | | | | 900 | Chrome Debris | Tape, gloves, etc. | Stabilization | 4.8 | 7.2 | 8,5 | 4.5 | 1.0 | 1.32 | 0.77 | 0.94 | | | | | & Secure Landfill | | | The state of s | | | | | | | | | THIS FORM DEVEL OPEN BY. THE | RV. THE NEW VODV COATE DESIGNATION OF | The Age of the Age of the Age of | | | | | | | | THIS FORM DEVELORED BY: THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF SOLID & HAZARDOUS MATERIALS, BUREAU OF WASTE REDUCTION & RECYCLING 4 | EPALD.NUMBER NYD990774200 | | |--|--| | COMPANY NAME US Chrome Corporation of New York | | ### TABLE 1 | Total Control of the | | *************************************** | | | | | | | | | | |---
--|---|-------------------|---|--|---|---------|------------|--|------------|-----------| | WASTE
STREAM
1D NUMBER | NAME OF WASTE | SOURCE OF GENERATION | DISPOSAL METHOD | 2003 | ANTITY OF W. (TC 2004 | QUANTITY OF WASTE GENERATED (TONS) 2005 | ED 2006 | BASE INDEX | PRODUCTIVITY INDEX BASE INDEX = 1 (VEAR HWRP FIRST SUBMITTED) 2003 2004 2005 | MRP BIRSTS | UBMITTED) | | 100- | Chromic Acid | Plating solution | Treat/Recycle | 8.89 | 3.79 | 2.24 | 3.05 | 0.99 | 1.47 | 0.96 | 1.13 | | | Solution (D) | with impurities | | | | | | | | | | | , | | | | | | | | | | | | | 002 | Chromic Acid | Sediment on | Stabilization | 1.66 | 2.15 | 2.80 | 1.40 | 0.99 | 1.47 | 96.0 | 1.13 | | | Tank Sludge (E) | bottom of tank | & Secure Landfill | 003 | Waste Treatment | WW Metals removal | Stabilization | 5.94 | 9.55 | 9.33 | 3.75 | 0.99 | 1.47 | 0.96 | 1.13 | | | Filter Cake (A) | | & Secure Landfill | 004 | waste Water (B) | Plating & Rinsing | On-Site Treatment | 722.0 | 980.0 | 571.0 | 421.17 | 0.99 | 1.47 | 96.0 | 1.13 | | | | | | | | | | | | | | | 900 | Stripping Solutior | Spent Alkaline | Treatment & | 2.13 | 2.84 | 6.40 | 6.88 | 0.99 | 1.47 | 96.0 | 1.13 | | | | Strip Solution | Secure Landfill | | | | | | | | | | | | | | | - | | | | | | | | 900 | Chrome Debris | Tape, gloves, etc. | Stabilizartion | 3.47 | 5,80 | 15.0 | 11.4 | 0.99 | 1.47 | 0.96 | 1.13 | | | | | & Secure Landfill | | | | | | | | | | | ADPITED TO THE PROPERTY OF | | | AND DESCRIPTION OF THE PERSON | Contract of the th | Salar Market Annual Persons Name of Street, or other | | | • | • | | THIS FORM DEVELOPED BY: THE NEW YORK
STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF SOLID & HAZARDOUS MATERIALS, BUREAU OF WASTE REDUCTION & RECYCLING | COMPANY NAME US Chrome Corporation of New York | A LD. NUMBER NYD990774200 | |--|---------------------------| | | | ### TABLE 1 | WASTE
STREAM
ID NUMBER | NAME OF WASTE | SOURCE OF GRNERATION | DISPOSALMETHOD | 1995 | QUANTITY OF WASTE GENERATED 1996 (TONS) | ASTE GENERATI
NS)
1997 | 1998 | BASE INDE | PRODUCTIVITY INDEX PRODUCTIVITY INDEX 1995 1995 | WRP FIRST 8 | UBMITTED) | |------------------------------|--------------------|----------------------|-------------------|------|---|------------------------------|---|-----------|--|-------------|-----------| | 007 | Chromic Acid | Plating solution | Treat/Recycle | | 6.44 | 1.19 | 9.87 | | 0.33 | 3.0 | 200 | | | Solution (D) | with impurities | | | | | | | | | 2 | | | | | | | | : | AND DESCRIPTION OF THE PERSON | | | | | | 003 | Chromic Acid | Sediment on | Stabilization | | 2:63 | 2.33 | 09.9 | | 0.30 | 0.94 | 0.33 | | ٠ | Tank Sludge (E) | bottom of tank | & Secure Landfill | 003 | Waste Treatment | WW Metals removal | Stabilization | 8.1 | 2.1 | 2.37 | 3.34 | 0.55 | 1.28 | 0.664 | 0.652 | | | Filter Cake (A) | | & Secure Landfill | | | | | | The state of s | | | | | | 2 | | | | | | | | | | | 004 | waste Water (B) | Plating & Rinsing | On-Site Treatment | 228 | 266.5 | 263.8 | 260.54 | 0.62 | 1.28 | 0.664 | 0.652 | | | | | | - | | | | | | | | | . 500 | Stripping Solution | Spent Alkaline | Treatment & | | 5.66 | 3.65 | 8.73 | | 0.09 | 1.496 | 0.4 | | | | Strip Solution | Secure Landfill | - | | | | | THIS FORM DEVELOPED BY: THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF SOLID & HAZARDOUS MATERIALS, BUREAU OF WASTE REDUCTION & RECYCLING ### HAZARDOUS WASTE REDUCTION PROGRAM EPALD.NUMBER NYD990774200 COMPANY NAME U.S. Chrome Corporation of New York ### TABLE 2 | 001 | NAME OF WASTE | WASTE STREAM AFFECTED | REDUCTION PLANS/PROJECTS | ESTIMATED WASTE REDUCTION (TONS) | METHOD USED
TO
CALCULATE
*ROI | *ROI
(EST) | COAL DATE | REMARKS | | |-----|--|-----------------------|---|----------------------------------|--|---------------|--|--|---| | | Chromic Acid
Solution
(D002, D007) | | a) Improved
Efficiency | | N/A | N/A | | | T | | | 8 | | b) Employee
Training | | | | | | Π | | | | | | | | | | | F | | 004 | Process Wastewater
& Filter Cake | | a) Improved
Efficiency | | N/A | N/A | And the second contraction of the second | | T | | | | | b) Employee
Training | | N/A | N/A | | | T | | | | | | | - | | | | Г | | 005 | Stripping
Solution | | Quality
Control | | N/A | N/A | | | T | | | | | | | | | | | Г | | 900 | Chrome Debris | Tape, Gloves, Etc. | a) Employee | | N/A | N/A | | | T | | | | | b) Improved
Housekeeping &
Addn Control | | | | | The state of s | Τ | | 007 | Waste De-burring
Solution | | Marte Stream
1/1/12 | | | | | | T | | | | | | | | | | | П | | | | | | · | | | | | T | | | | | | | | | - | | Т | | | | | | | | | | | П | *ROI = RATE OF INVESTMENT' AC = ANNUALIZED COST IRR = INCREASED RATE OF RETURN NPV - NET PRESENT VALUE PP = PAYBACK PERIOD PI - PROPITABILITY INDEX THIS FORM DEVELOPED BY: THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF SOLID & HAZARDOUS MATERIALS, BUREAU OF WASTE REDUCTION & RECYCLING ### HAZARDOUS WASTE REDUCTION PLAN 2013 Annual Update Prepared For: U.S. Chrome Corporation of New York 31 Swan Street Batavia, New York
Prepared By: Hazard Evaluations, Inc. 3752 North Buffalo Road Orchard Park, New York 14127 June 30, 2014 ### 1.0 INTRODUCTION ### 1.1 Background The U.S. Chrome Corporation of New York (USC) facility, located at 31 Swan Street, Batavia, New York, specializes in Hard Chrome electroplating of metal parts. The operations performed on-site to produce the facility's end products include very limited machining of metal parts, alkaline cleaning, non-cyanide Chromium electroplating and rinsing. Hazardous waste generation is related primarily to the cleaning and processing of metal parts and the treatment of the resulting wastewaters. The alkaline cleaning involves use of a caustic solution, while the electroplating bath consists of a solution containing Hexavalent Chromium. In 2013, there were six different hazardous waste streams generated by the facility, including: 1) Hazardous wastewater treatment plant filter cake; 2) Chromium contaminated debris; 3) Waste Chromic Acid solution; 4) Alkaline Stripping Solution; 5) Chromic Acid Tank Sludge; and 6) Electroplating process wastewater. The electroplating process wastewater is treated on-site for metals precipitation and clarification prior to being discharged to the local POTW. All other wastes are shipped off-site for treatment, stabilization and landfill disposal. ### 1.2 Corporate Hazardous Waste Reduction Policy It is the policy of USC to operate its facility both with the highest regard for the protection of human health and the environment, and in accordance with applicable federal, state and local environmental laws and regulations. Furthermore, it is USC's long term goal to: 1) Reduce the overall quantity of hazardous waste(s) generated; and/or 2) Recover, reuse or recycle any hazardous wastes generated when possible. To that end, USC has already initiated various waste reduction efforts over the past several years. USC's management has authorized its General Manager to implement those waste reduction measures which have been deemed technically feasible and economically practical. This individual is also responsible for implementing both the hazardous waste reduction policy and the provisions of the Hazardous Waste Reduction Plan (HWRP). USC's primary goal is to maintain its existing waste reduction efforts in a manner which maximizes efficiency and effectiveness. The use of "Porous Pots" in the plating baths has helped reduce waste Chromic Acid solution by removing impurities and extending the life of this process solution. USC will also continue to monitor industry research regarding more efficient methods of managing or recovering the alkaline stripping solution and minimizing the amount of wastewater from the electroplating process. To enhance these efforts, USC plans to provide employee training focusing on the implementation, benefits and applicability of waste reduction measures. Achieving this goal will reduce both disposal costs and the regulatory requirements for hazardous wastes generated throughout the facility. ### 2.0 HAZARDOUS WASTE GENERATION ### 2.1 General During calendar year 2013, USC generated a total of 23.6 tons of RCRA hazardous wastes that were shipped off-site. These wastes included the following: - 1) 8.1 tons of Chromium Contaminated Debris (D007, D008); - 2) 6.9 tons of Waste Chromic Acid Solution (D002, D007); - 3) 0.8 tons of Alkaline Stripping Solution (D002, D007); - 4) 3.6 tons of Hazardous Waste Treatment Plant Filter Cake (F006); - 5) 4.2 tons of Chromic Acid Tank Sludge (D002, D007) In addition, a total of 432 tons of hazardous process wastewater were treated on-site before being discharged to the local POTW. There were no acute hazardous wastes generated by USC during 2013. ### 2.2 Hazardous Waste Streams As indicated above, nearly all of the reportable hazardous wastes generated by USC result directly from the facility's cleaning and processing of metal parts. The primary cleaning operation involves submersing (stripping) the parts in an alkaline solution (Tetra Potassium Pyrophosphate - TKPP) and then rinsing the parts with fresh water. Over time, the alkaline solution may become spent and have to be disposed. This disposal process typically occurs about once every two years. The parts are then charged and placed in an electroplating bath containing Chromic acid. Wastes generated from this process may include waste Chromic acid solution and Chromic acid tank sludge that are removed from the electroplating bath tanks. The plated parts are then rinsed, and the rinse water is treated in the on-site wastewater treatment system via metal precipitation and clarification. The water treatment system includes a filter press which results in production of a filter cake waste. The final waste stream consists of debris produced during processing, including gloves, tape, floor sweepings and other ancillary materials. Of the various hazardous wastes generated by USC during 2013, three of the five waste streams will be addressed in this HWRP update including Chrome contaminated debris, waste chromic acid solution and process wastewater. These wastes were all generated in amounts greater than five tons and together accounted for more than 90% of the total hazardous waste generated in 2013. The remaining hazardous wastes (alkaline stripping solution, chromic acid tank sludge and wastewater treatment plant filter cake) were generated at a rate below the five ton reporting threshold, and are not further addressed in this HWRP. ### 2.3 Production Rate Index A Production Rate Index (PRI) has been developed for this facility to measure, and account for, changes in the annual amount of parts processed. These data will be used to facilitate the assessment of hazardous waste reduction efforts by allowing USC's management to distinguish inter-year quantity changes that resulted from waste reduction activity from those caused by economic and/or other factors. The PRI for Calendar Year 2013 was calculated based on past production information provided by USC personnel, as follows: 2013 Production = \$2,335,708 2012 Production = \$2,992,541 Production Rate Index = \$2,335,708 / \$2,992,541 = 0.78 ### 2.4 Hazardous Waste Management Costs To date, the costs of managing USC's hazardous wastes have resulted from the following activities (based on USC estimates): Labor and Materials for Waste Management (Annual) Labor (i.e., operators, technicians): \$ 44,674 Other/Miscellaneous Expenses: 2,942 Transportation & Disposal of Wastes (Annual): 16,081 Total \$ 63,697 ### 3.0 HAZARDOUS WASTE STREAM REDUCTION MEASURES ### 3.1 General As indicated in the previous sections, USC's hard chrome plating operations may result in the generation of several different types of hazardous waste. USC has already committed resources to determining and evaluating various measures for reducing the facility's overall hazardous waste generation rate and volume. The waste reduction measures which are currently utilized (and/or scheduled for implementation) at this facility include research regarding more efficient methods of managing or recovering the alkaline stripping solution, minimizing debris associated with the plating process, and minimizing the amount of wastewater from the electroplating process. Additionally, enhanced employee training will be pursued to improve waste management. These measures are discussed below. ### 3.2 Waste Reduction Measures To minimize the quantity of hazardous wastes produced, USC has already implemented various production-related activities. These include limited use of Porous Pots in the Chromic acid baths to prolong process solution life and reduce tank sludges and continued use of the treatment system sludge dryer to reduce sludge weight. In addition, the implementation of new methods of masking parts to be plated has continually reduced the generation rate for this waste over time. USC is also committed to reviewing industry journals and trade publications for improved methods of using the alkaline cleaning solution. Reduced waste production may result from lengthening the useful life of the solution by filtration, by-product removal, etc., although no solution has been identified to date. The investigation into reducing the amount of wastewater produced from rinsing plated parts concluded with the selection of a lower flow rinsing nozzle, with the recirculation of rinse waters being allowed for some select operations. Another waste reduction technique which is continually being used by USC is employee training. Currently, all personnel, regardless of their possible exposure to hazardous materials and/or hazardous wastes. receive OSHA Communications Standard training. RCRA Hazardous Waste training is also provided to a select group of employees that are involved with hazardous waste management or generation. These training programs are provided annually and cover a variety of topics including, but not limited to, compliance with applicable federal and state regulations; solid and hazardous waste identification definitions; sources of hazard information; the "cradle to grave" waste tracking system and employee responsibilities regarding waste identification and characterization. USC will continue to revise and expand these training programs to include additional information focusing on hazardous waste reduction. Among the new topics proposed are applicable waste reduction regulations, corporate waste reduction policy, benefits and incentives for hazardous waste reduction, and implementation of waste reduction techniques. Continued improvements in facility housekeeping, minor changes in operating practices and the installation/use of additional control equipment (e.g. splash guards on plating tanks) remain planned for 2014. These measures are designed to provide a cleaner, safer work environment at the USC facility and should ultimately lead to a reduction in the amount of chromium-contaminated debris and other wastes generated. ### 4.0 IMPACT
OF WASTE REDUCTION IMPLEMENTATION ### 4.1 Schedule The proposed schedule of implementation for the proposed waste reduction measures identified in Section 3.2 is summarized in Table 2. ### 4.2 Future Waste Transference Estimate The implementation of the proposed waste reduction techniques identified in Section 3.2 will not result in the transference of waste to any other environmental media. The continued training program will provide employees with valuable information on the benefits of waste reduction and include basic techniques for reducing wastes at the USC facility. This program should help to promote the concept of waste reduction throughout the facility. ### 4.3 Economic Practicality When adjusted for the production rate decrease between 2012 and 2013 (22 percent), the actual cost savings have increased due to increased labor costs and other miscellaneous expenses. In 2013, USC estimated the total cost of managing and disposing hazardous waste to be \$63,697. Future waste management costs will be estimated with more production and waste generation data. Implementation of USC's waste reduction measures will continue to be evaluated relative to hazardous waste generation volume, management cost, and production. Estimation of cost savings will be reported in future Hazardous Waste Reduction Plans. 4.4 Waste Reduction Assessments The measurement of waste reduction effectiveness was completed for each reportable hazardous waste stream generated by USC during 2013. The waste reduction measurement was completed using a method developed and identified in USC's CY 1996 Hazardous Waste Reduction Plan, with the exception of the calculation of the Actual Hazardous Waste Reduction Rate presented below as Step 5. This calculation has been modified to reflect an example obtained from the NYSDEC during 2000. **Chrome Contaminated Debris** Step 1 Percentage change (C) in the waste stream's generation volume from one year to the next (Note: A negative number represents a reduction in the generation volume): Comparing 2013 to 2012 (Prior Year) C = (Waste current year [2013]) - (Waste prior year [2012]) x 100 (Waste prior year [2012]) C = $$(8.1 - 10.8)$$ = -0.25 x 100 (10.8) C = 25% Volume decrease from 2012 (Prior Year) to 2013 Comparing 2013 to 2003 (Base Year) C = (Waste current year [2013]) - (Waste base year [2003]) x 100 (Waste base year [2003]) C = $$(8.1 - 3.47)$$ = 1.33 x 100 (3.47) C = 133% Volume increase from 2003 (Base Year) to 2013 Step 2 Production Rate Index (PRI) (Note: A number less than 1.0 will represent a reduction in the facility's production): Comparing 2013 to 2012 (Prior Year) PRI = (Production current year [2012]) (Production prior year [2011]) PRI = $$(\$2,335,708)$$ $(\$2,992,541)$ PRI = 0.78 23 ### Comparing 2013 to 2003 (Base Year) PRI = (Production current year [2013]) (Production base year [2003]) PRI = (\$2,335,708)(\$1,266,404) PRI = 1.84 Step 3 Expected amount of hazardous waste generated (EHW) in 2013 relative to production in previous year (2012) and base year (2003): ### Comparing 2013 to 2012 (Previous Year) EHW = 2013/2012 PRI x Hazardous waste generated during 2012: EHW = $0.78 \times 10.8 \text{ tons}$ EHW = **8.42 tons** (expected in 2013) ### Comparing 2013 to 2003 (Base Year) EHW = 2013/2003 PRI x hazardous waste generated during 2003: $EHW = 1.84 \times 3.47 \text{ tons}$ EHW = 6.38 tons (expected in 2013) Step 4 Hazardous Waste Reduction (HWR) for CY 2013 represents the theoretical volume of increase or decrease of the current year's actual generated waste volume relative to the volume of hazardous waste "expected" to be generated when accounting for production differences between the previous/current year and base/current year [Note: A negative number indicates an increase in volume of hazardous waste generated (adjusted for production)]: ### Comparing 2013 to 2012 (Previous Year) HWR = 2013/2012 EHW - Actual hazardous waste generated during 2013. HWR = 8.42 tons - 8.1 tons HWR = 0.32 tons adjusted hazardous waste decrease from 2012 to 2013. ### Comparing 2013 to 2003 (Base Year) HWR = 2013/2003 EHW - Actual hazardous waste generated during 2013. HWR = 6.38 tons - 8.1 tons HWR = -1.72 tons adjusted hazardous waste increase from 2003 to 2013. Step 5 Estimate of the actual hazardous waste reduction rate (RR) achieved is a representation of the percentage difference between the Expected Hazardous Waste volume (relative to production) and the theoretical Hazardous Waste Reduction (or increase) volume [Notes: A negative number indicates an increase of hazardous waste generated for the current year, expressed as a percentage of the Expected Hazardous Waste (which is adjusted for production)! Using 2013/2012 (Previous Year) HWR & EHW RR = $\frac{2013/2012 \text{ HWR}}{2013/2012 \text{ EHW}} \times 100$ RR = $\frac{0.32 \text{ tons}}{8.42 \text{ tons}} = 0.04 \text{ X } 100$ RR = 4% decrease from 2012 to 2013 Using 2013/2003 (Base Year) HWR & EHW RR = 2013/2003 HWR x 100 2013/2003 EHW RR = $-\frac{1.72 \text{ tons}}{6.38 \text{ tons}}$ = -0.27 X 100 RR = 27% increase from 2003 to 2013 ### Waste Chromic Acid Solution Step 1 Percentage change (C) in the waste stream's generation volume from one year to the next (Note: A negative number represents a reduction in the generation volume): Comparing 2013 to 2012 - C = (Unit waste current year [2013]) (Unit waste prior year [2012]) x 100 (Unit waste prior year [2012]) - C = (6.9 6.1) = 0.13 x 100 (6.1) - C = 13% Volume increase from 2012 to 2013 Comparing 2013 to 1996 (Base Year) - C = (Waste current year [2013]) (Waste base year [1996]) x 100 (Waste base year [1996]) - C = (6.1 5.66) = 0.07 x 100 (5.66) - C = 8% Volume increase from 1996 (Base Year) to 2013 - Step 2 Production Rate Index (PRI) (Note: A number less than 1.0 will represent a reduction in the facility's production): Comparing 2013 to 2012 (Prior Year) PRI = (Production current year [2012]) (Production prior year [2011]) PRI = $\frac{(\$2,335,708)}{(\$2,992,541)}$ PRI = 0.78 Comparing 2013 to 2003 (Base Year) PRI = (Production current year [2013]) (Production base year [2003]) PRI = (\$2,335,708)(\$1,266,404) PRI = 1.84 Step 3 Expected amount of hazardous waste generated (EHW) in 2013 relative to production in previous year (2012) and base year (1996): Comparing 2013 to 2012 (Previous Year) EHW = 2013/2012 PRI x Hazardous waste generated during 2012: EHW = 0.78×6.1 tons EHW = **4.76 tons** (expected in 2013) Comparing 2013 to 1996 (Base Year) EHW = 2013/1996 PRI x hazardous waste generated during 1996: $EHW = 1.84 \times 5.66 \text{ tons}$ EHW = 10.4 tons (expected in 2013) Hazardous Waste Reduction (HWR) for CY 2013 represents the theoretical volume of increase or decrease of the current year's actual generated waste volume relative to the volume of hazardous waste "expected" to be generated when accounting for production differences between the previous/current year and base/current year [Note: A negative number indicates an increase in volume of hazardous waste generated (adjusted for production)]: ### Comparing 2013 to 2012 (Previous Year) HWR = 2013/2012 EHW - Actual hazardous waste generated during 2013. HWR = 4.76 tons - 6.9 tons HWR = -2.14 tons adjusted hazardous waste increase from 2012 to 2013. ### Comparing 2013 to 1996 (Base Year) HWR = 2013/1996 EHW - Actual hazardous waste generated during 2013. HWR = 10.4 tons - 6.9 tons HWR = 3.5 tons adjusted hazardous waste decrease from 1996 to 2013. Step 5 Estimate of the actual hazardous waste reduction rate (RR) achieved is a representation of the percentage difference between the Expected Hazardous Waste volume (relative to production) and the theoretical Hazardous Waste Reduction (or increase) volume [Note: A negative number indicates an increase of hazardous waste generated for the current year, expressed as a percentage of the Expected Hazardous Waste (which is adjusted for production)]: ### Using 2013/2012 (Previous Year) HWR & EHW $RR = \frac{2013/2012 \text{ HWR}}{2013/2012 \text{ EHW}} \times 100$ RR = $\frac{-2.14 \text{ tons}}{4.76 \text{ tons}}$ = -0.45 X 100 RR = 45% increase from 2012 to 2013 21 ### Using 2013/1996 (Base Year) HWR & EHW RR = $$\frac{2013/1996 \text{ HWR}}{2013/1996 \text{ EHW}} \times 100$$ ### **Process Wastewater** Step 1 Percentage change (C) in the waste stream's generation volume from one year to the next (Note: A negative number represents a reduction in the generation volume): Comparing 2013 to 2012 - C = (Unit waste current year [2013]) (Unit waste prior year [2012]) x 100 (Unit waste prior year [2012]) - C = (432 450) = 0.04 x 100 (450) - C = 4.0% Volume decrease from 2012 to 2013 Comparing 2013 to 1995 (Base Year) - C = (Waste current year [2013]) (Waste base year [1995]) x 100 (Waste base year [1995]) - $C = (432 228) = 0.89 \times 100$ (228) - C = 89% Volume increase from 1995 (Base Year) to 2013 Step 2 Production Rate Index (PRI) (Note: A number less than 1.0 will represent a reduction in the facility's production): Comparing 2013 to 2012 (Prior Year) PRI = (Production current year [2012]) (Production prior year [2011]) $$PRI = \frac{(\$2,335,708)}{(\$2,992,541)}$$ $$PRI = 0.78$$ ### Comparing 2013 to 2003 (Base Year) PRI = (Production current year [2013]) (Production base year [2003]) PRI = (\$2,335,708)(\$1,266,404) PRI = 1.84 Step 3 Expected amount of hazardous waste generated (EHW) in 2013 relative to production in previous year (2012) and base year (1995): Comparing 2013 to 2012 (Previous Year) EHW = 2013/2012 PRI x Hazardous waste generated during 2012: $EHW = 0.78 \times 450 \text{ tons}$ EHW = **351.0** tons (expected in 2013) Comparing 2013 to 1995 (Base Year) EHW = 2013/1995 PRI x hazardous waste generated during 1995: $EHW = 1.84 \times 228 \text{ tons}$ EHW = **419.5 tons** (expected in 2013) Step 4 Hazardous Waste Reduction (HWR) for CY 2013 represents the theoretical volume of increase or decrease of the current year's actual generated waste volume
relative to the volume of hazardous waste "expected" to be generated when accounting for production differences between the previous/current year and base/current year [Note: A negative number indicates an increase in volume of hazardous waste generated (adjusted for production)]: Comparing 2013 to 2012 (Previous Year) HWR = 2013/2012 EHW - Actual hazardous waste generated during 2013. HWR = 351 tons - 432 tons HWR = -81 tons adjusted hazardous waste increase from 2012 to 2013. Comparing 2013 to 1995 (Base Year) HWR = 2013/1995 EHW - Actual hazardous waste generated during 2013. HWR = 420 tons - 432 tons HWR = -12 tons adjusted hazardous waste increase from 1995 to 2013. Step 5 Estimate of the actual hazardous waste reduction rate (RR) achieved is a representation of the percentage difference between the Expected Hazardous Waste volume (relative to production) and the theoretical Hazardous Waste Reduction (or increase) volume [Note: A negative number indicates an increase of hazardous waste generated for the current year, expressed as a percentage of the Expected Hazardous Waste (which is adjusted for production)]: Using 2013/2012 (Previous Year) HWR & EHW $RR = \frac{2013/2012 \text{ HWR}}{2013/2012 \text{ EHW}} \times 100$ RR = <u>-81 tons</u> = 0.23 X 100 351 tons RR = 23% increase from 2012 to 2013 Using 2013/1995 (Base Year) HWR & EHW $RR = \frac{2012/1995 \text{ HWR}}{2012/1995 \text{ EHW}} \times 100$ RR = $\frac{-12 \text{ tons}}{419.5 \text{ tons}} = 0.03 \text{ X } 100$ RR = **3% increase** from 1995 to 2013 | | 200 | | |--------------------------|--|--| | The second second second | NYD990774 | | | | RPA I.D. NUMBER | | | | COMPANY NAME US Chrome Corporation of New York | | ### TABLE 1 | WASTE
STREAM
ID NUMBER | NAME OF WASTE | SOURCE OF GENERATION | DISPOSAL METHOD | QU
1995 | QUANTITY OF WASTE GENERATED (TONS) 1996 | STE CENERATI
NS)
1997 | ED 1998 | BASE INDEX | PRODUCTIVITY INDEX BASE INDEX=1 (YEARHWRP FIRST SUBMITTED) 1995 1996 1998 | WRE FIRST ST | JAMITTED) | |------------------------------|--------------------|--|-------------------|------------|---|-----------------------------|---------|------------|---|---------------------------------|-----------| | 001 | Chromic Acid | Plating solution | Treat/Recycle | | 6.44 | 1.19 | 9.87 | | 0.33 | 3.0 | | | | Solution (D) | with impurities | 002 | Chromic Acid | Sediment on | Stabilization | | 2.63 | 2.33 | 6.60 | | 0.30 | 0.94 | 0.33 | | | Tank Sludge (E) | bottom of tank | & Secure Landfill | | | | * | | | | | | | ī | | | | | | | | | | | | 003 | Waste Treatment | WW Metals removal | Stabilization | 8.1 | 2.1 | 2.37 | 3.34 | 0.55 | 1.28 | 0.664 | 0.652 | | | Filter Cake (A) | | & Secure Landfill | 004 | waste Water (B) | Plating & Rinsing | On-Site Treatment | 228 | 266.5 | 263.8 | 260.54 | 0.62 | 1.28 | 0.664 | 0.652 | | | | | | | | | | | | | | | 005 | Stripping Solution | Spent Alkaline | Treatment & | | 5.66 | 3.65 | 8.73 | | 0.09 | 1.496 | 0.4 | | | | Strip Solution | Secure Landfill | Assessment and a second | | - | - | | - | | | - Annual Property of the Parket | 1 | THIS FORM DEVELOPED BY: THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF SOLID & HAZARDOUS MATERIALS, BUREAU OF WASTE REDUCTION & RECYCLING | RPA LD. NUMBER NYD990774200 | | |--------------------------------|--| | Chrome Corporation of New York | | | COMPANY NAME U.S. Ch. | | ### TABLE 1 (continuation #1) | WASTE
STREAM
ID
NUMBER | NAME OF WASTE | SOURCE OF GENERATION | DISPOSAL METHOD | ° | QUANTITY OF WASTE GENERATED (TONS) | ASTE GENERAT | . 030 | BASE IND | PRODUCTIVITY INDEX BASE INDEX = 1 (YEAR HWRP FIRST SUBMITTED) | IVITY INDEX
HWRP BIRST | 3UBMITTIED) | |---------------------------------|--------------------|---|-------------------------|----------|------------------------------------|--------------|----------|----------|---|---------------------------|-------------| | | | | | 1999 | 2000 | 2001 | 2002 | 1999 | 2000 | 2001 | 2002 | | 100 | Chromic Acid | Plating Solution | treat/Recycle | 3.80 | 6.25 | 00.00 | 00.00 | 1.5 | 1.2 | 1.3 | 0.97 | | | Solution (D) | with impurities | | | | | | - | | | | | | | | | | | | | | | | | | 002 | Chromic Acid | Sediment on | Stabilization | 0.44 | 3.90 | 0.30 | 1.6 | 0.11 | 6.0 | 0.80 | 0 07 | | | Tank Sludge (E) | Bottom of Tank | & Secure Landfill | | | | | | | | 16:5 | | | | | | | | | | | | | | | 003 | Waste Treatment | WW Metals removal | Stabilizaion | 4.02 | 3.21 | 3.13 | 1.51 | 0.640 | 0.631 | 0.623 | 0.97 | | | Filter Cake (A) | | & Secure Landfill | 004 | Waste Water (B) | Plating & Rinsing | On site Treatment | 264.68 | 258.21 | 253.98 | 1017.0 | 0.642 | 0.631 | 0.623 | 76.0 | | | | | | | | | | | | | | | 900 | Stripping Solution | Spent Alkaline | Treatment & | 8.15 | 3.48 | 5.44 | 6.05 | 0.45 | 0.40 | 0 42 | 0.97 | | | | Strip Solution | Secure Landfill | II. | THIS FORM DEVELOPED BY: THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION | S NEW YORK STATE DEPART | IMENT OF | ENVIRONM | ENTAL CON | SERVATIO | 2 | | | - | IS FORM DEVELOFED BY: THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF SOLID & HAZARDOUS MATERIALS, BUREAU OF WASTE REDUCTION & RECYCLING ح کر | | TYD990774200 | | |--------------|-----------------------------------|--| | | EPA I.D. NUMBER | | | COMPANY NAME | US Chrome Corporation of New York | | ### TABLE 1 | WASTE
STREAM
ID NUMBER | NAME OF WASTE | SOURCE OF GRIBBATION | DISPOSAL METHOD | 2003 | QUANTITY OF WASTE GENERATED (TONS) 2004 | ASTE CENERATIONS) | 2006 | BASE INDEX | PRODUCTIVITY INDEX RASE INDEX = 1 (YEAR HWRP FIRST SUBMITTED) | TICY INDEX | UBMITTED) | |------------------------------|--------------------|----------------------|-------------------|-------|---|-------------------
--|--|---|------------|---| | 100 | Chromic Acid | Plating solution | Treat/Recycle | 8.89 | 3.79 | 2.24 | 3.05 | 0.99 | 1.47 | 2005 | 2006 | | | Solution (D) | with impurities | | | | - | 003 | Chromic Acid | Sediment on | Stabilization | 1.66 | 2.15 | 2.80 | 1.40 | 0.99 | 1.47 | 96.0 | 1.13 | | | Tank Sludge (E) | bottom of tank | & Secure Landfill | 003 | Waste Treatment | WW Metals removal | Stabilization | 5.94 | 9.55 | 9.33 | 3.75 | 0.99 | 1.47 | 0.96 | 1.13 | | | Filter Cake (A) | | & Secure Landfill | 004 | waste Water (B) | Plating & Rinsing | On-Site Treatment | 722.0 | 0.086 | 571.0 | 421.17 | 0.99 | 1.47 | 0.96 | 1.13 | | | | | | | | | | | | | | | 005 | Stripping Solution | Spent Alkaline | Treatment & | 2.13 | 2.84 | 6.40 | 6.88 | 0.99 | 1.47 | 96.0 | 1.13 | | | | Strip Solution | Secure Landfill | | | | | W | | | | | | | | | | | | | | | | | | 900 | Chrome Debris | Tape, gloves, etc. | Stabilizartion | 3.47 | 5.80 | 15.0 | 11.4 | 0.99 | 1.47 | 0.96 | 1.13 | | | | 4 | & Secure Landfill | | | | | | | | | | | | | | - | | | Contract of the last la | The state of s | | | 0.5000000000000000000000000000000000000 | THIS FORM DEVELOPED BY: THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF SOLID & HAZARDOUS MATERIALS, BUREAU OF WASTE REDUCTION & RECYCLING | RPA LD. NUMBER NYD990774200 | | |--|--| | COMPANY NAME U.S. Chrome Corporation of New York | | TABLE 1 (continuation #1) | WASTE
STREAM
ID | NAME OF WASTE | SOURCE OF GENERATION | DISPOSAL METHOD | Ů | UANTITY OF W | QUANTITY OF WASTE GENERATED (TONS) | ED | BASE IND | PRODUCTI
EX=1 (YEAR | PRODUCTIVITY INDEX BASE INDEX = 1 (YEAR HWRP FIRST SUBMITTED) | (UBMITTED) | |---|--------------------|---|------------------------|----------|--------------
--|-----------|----------|------------------------|---|------------| | NUMBER | | | | 2007 | 2008 | 2009 | 2010 | 2007 | 2008 | 2009 | 2010 | | 100 | Chromic Acid | Plating Solution | Treat/Recycle | 5.95 | 8.75 | 10.85 | 3.0 | 1.0 | 1.32 | 0.77 | 0.94 | | | Solution (D) | with impurities | 002 | Chromic Acid | Sediment on | Stabilization | 3.85 | 0.7 | 0.7 | 0.35 | 1.0 | 1.32 | 0.77 | 0.94 | | | Tank Sludge (E) | Bottom of Tank | & Secure Landfill | | | | | | | | | | | , | | | | | The second secon | | | | | | | 600 | Waste Treatment | WW Metals removal | Stabilizaion | 2.25 | 3.75 | 0.75 | 0.75 | 1.0 | 1.32 | 0.77 | 0.94 | | | Filter Cake (A) | | & Secure Landfill | 004 | Waste Water (B) | Plating & Rinsing | On site Treatment | 417 | 462.3 | 500.4 | 362.8 | 1.0 | 1.32 | 0.77 | 0.94 | | | | | | | | | | | | | | | 905 | Stripping Solution | Spent Alkaline | Treatment & | 2.75 | 8.25 | 0 | 6.05 | 1.0 | 1.32 | 0.77 | 0.94 | | | | Strip Solution | Secure Landfill | | | | | | | | | | 900 | Chrome Debris | Tape, gloves, etc. | Stabilization | 4.8 | 7.2 | 8.5 | 4.5 | 1.0 | 1.32 | 0.77 | 0.94 | | | | , | & Secure Landfill | | | | | | | | | | Towns of the last | 1 | THIS FORM DEVELOPED BY: THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION | E NEW YORK STATE DEPAR | TMENT OF | ENVIRONA | TENTRAY, CO. | OTTAVORSO | N | - | | | THIS FORM DEVELOYED BY THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF SOLID & HAZARDOUS MATERIALS, BUREAU OF WASTE REDUCTION & RECYCLING | | 990774200 | | |--------------|-----------------------------------|--| | | EPA ID. NUMBER NYD | | | COMPANY MARY | US Chrome Corporation of New York | | ### TABLE 1 | WASTE
STREAM
ID NUMBER | NAME OF WASTE | SOURCE OF GENERATION | DISPOSAL METHOD | QU
2011 | ANTITY OF WASTE (TONS) | QUANTITY OF WASTE GENERATED 2012 (TONS) 2013 | BASE IND | PRODUCTAVITY INDEX PRODUCTAVITY INDEX O O O O O O O O O O O O O O O O O O O | WRP FIRST SUJ | SMITTED) | |------------------------------|--------------------|----------------------|-------------------|------------|------------------------|--|----------|---|---------------|----------| | 100 | Chromic Acid | Plating solution | Treat/Recycle | 9.4 | 3.6 | 6.9 | 1.46 | 1.05 | 0.78 | | | | Solution (D) | with impurities | | | | | | - | | | | | | | | | | | | | | | | 002 | Chromic Acid | Sediment on | Stabilization | 1.5 | 0 | 4.2 | 1.46 | 1.05 | 0.78 | | | | Tank Sludge (E) | bottom of tank | & Secure Landfill | | | | | _ | | | | | | | | | | | | _ | | | | 003 | Waste Treatment | WW Metals removal | Stabilization | 1.5 | 2.1 | 3.6 | 1.46 | 1.05 | 97.0 | | | | Filter Cake (A) | | & Secure Landfill | 004 | Waste Water (B) | Plating & Rinsing | On-Site Treatment | 417 | 450 | 432 | 1.46 | 1.05 | 0.78 | | | | • | | | | | | | | | | | 005 | Stripping Solution | Spent Alkaline | Treatment & | 4.4 | 6.1 | 8.0 | 1.46 | 1.05 | 0.78 | | | | | Strip Solution | Secure Landfill | 900 | Chrome Debris | Tape,gloves, etc. | Stabilization | 8.6 | 10.8 | 8.1 | 1.46 | 1.05 | 0.78 | | | | | | & Secure Landfill | | | | | | ŀ | | THIS FORM DEVELOPED BY: THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF SOLID & HAZARDOUS MATERIALS, BUREAU OF WASTE REDUCTION & RECYCLING | SPALD. NUMBER NYD990774200 | | |---------------------------------|--| | | | | Chrome Corporation of New York | | | COMMANY NAME U.S. Chrome Corpor | | TABLE 1 (continuation #1) | WASTE | NAME OF WASTE | SOURCE OF GENERATION | DESPOSAL METHOD | ٥ | UANTITY OF W. | QUANTITY OF WASTE GENERATED (TONS) | | BASE INDE | FRODUCTI
X=1 (YEAR) | FRODUCTIVITY INDEX
BASE INDEX = 1 (YEAR HWAP FIRST SUBMITTED) | BMITTED) | |--------|--|--|------------------------------------|-----------|---------------|------------------------------------|---------|-----------|------------------------|--|----------| | NUMBER | | | | 2011 | 2012 | 2013 | | 2011 | 2012 | 2013 | | | 000 | Waste De-burring | Finishing | Treatment &
Secure Landfill | 5.4 | 0 | 0 | | 1.46 | 1.05 | 0.78 | | | | Solution | . 800 | Waste Lacquer/ | Unused/Expired | Stabilization &
Secure Landfill | 3.0 | 0 | 0 | | 1.46 | 3.05 | 0.78 | - | | | Thinner | Materials | , | | 1 | T. T | THIS FORM DEVELOPED BY THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION | E NEW YORK STATE DEPAR | STMENT OF | ENVIRONA | TENTAL CONSE | RVATION | | | | 7 | US FORM DE VELOFED BETALE NEW YORK STATE DEFARIMENT OF ENVIRONMENTAL CONSERVATI DIVISION OF SOLID & HAZARDOUS MATERIALS, BUREAU OF WASTE REDUCTION & RECYCLING 36 ### HAZARDOUS WASTE REDUCTION PROGRAM EPALD. NUMBER NYD990774200 COMMPANY NAME U.S. Chrome Corporation of New York ### TABLE 2 | *ROI GOAL DATE REMARKS (EST) | N/A | | N/A | N/A | N/A | N/A | 12/31/2014 | N/A | N/A | | | |---|--|-------------------------|-------------------------------------|-------------------------|-----------------------|-------------------------|-------------------------------|-----------------------------|-------------------------|----
--| | METHOD USED
TO
CALCULATE
*ROI | N/A | | N/A | N/A | N/A | N/A | | N/A | N/A | | The second secon | | ESTIMATED
WASTE
REDUCTION
(TONS) | | | | ř | | | | | | i. | | | REDUCTION PLANS/PROJECTS | a) Improved
Efficiency | b) Employee
Training | a) Improved
Efficiency | b) Employee
Training | Quality
Control | a) Employee
Training | b) Improved
Housekeeping & | a) Improved
Efficiency | b) Employee
Training | | | | WASTE STREAM AFFECTED | | | | | | Tape, Gloves, Etc. | | | | | | | NAME OF WASTE | Chromic Acid
Solution
(D002, D007) | | Process Wastewater
& Filter Cake | | Stripping
Solution | Chrome Debris | | Chromic Acid Tank
Sludge | | | | | WASTE
STREAM
ID NUMBER | 100 | | 004 | | 005 | 900 | | 003 | | | | AC=ANNUALIZED COST "ROI = RATE OF INVESTMENT IRR = INCREASED RATE OF RETURN NPV = NET PRESENT VALUE PP = PAYBACK PERIOD PI = PROFITABILITY INDEX THIS FORM DEVELOPED BY: THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF SOLID & HAZARDOUS MATERIALS, BUREAU OF WASTE REDUCTION & RECYCLING U.S. CHROME CORP. OF N.Y. 31 Swan Street BATAVIA, NEW YORK 14020 Ariel Rios Blag (DasyA) Washington, Oc Juy60 USEPA Soute **EPA** Mail To: US EPA ARIEL RIOS SOUTH 2254A Department: Mailstop: Phone: City/State Certified 3